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Systematic variations of the bond-valence sums calculated

from the poorly determined bond-valence parameters [Sidey

(2008), Acta Cryst. B64, 515–518] have been illustrated using a

simple graphical scheme.

Recent discussion on the reliability of the conventional bond-valence

(BV) parameters, r0 and b, determined using the ‘universal constant’

b = 0.37 Å (Krivovichev & Brown, 2001; Locock & Burns, 2004; Sidey,

2008; Wang & Liebau, 2009) has stimulated writing of this addendum

to the earlier communication of the author (Sidey, 2008). The main

goal of this addendum is to explain, as simply as possible, the reason

for the systematic variations of the bond-valence sums (BVSs)

calculated from the poorly determined BV parameters (Sidey, 2008).

All the terms, symbols and abbreviations used here correspond to

those used in the aforementioned original communication of the

author (Sidey, 2008).

The most commonly adopted empirical expression for the rela-

tionship between the bond valences sij and the bond lengths rij

(Brown & Altermatt, 1985; Brese & O’Keeffe, 1991) can be rewritten

as rij = r0 � b � ln(sij). Hence, every ‘sij � rij’ curve can be uniquely

represented as a straight line y = A + Bx by using the ‘ln(sij) � rij’

coordinate system (Fig. 1). The mathematical slope and the y inter-

cept of the above straight lines are equal to �b and r0, respectively.

The traditional calculation scheme for determining the conventional

BV parameters (Brown & Altermatt, 1985; Brese & O’Keeffe, 1991)

is based on the rather rough assumption that the mathematical slopes

of all ‘ln(sij) � rij’ straight lines are equal to �0.37 Å; so that all

observed ‘ln(sij) � rij’ correlations are approximated with the

constant-slope (conventional) straight lines rij = r0 – 0.37ln(sij). If the

real value of the b constant is not 0.37 Å, then the ‘optimized’

conventional straight line obtained for a given ion pair merely goes

through the ‘gravity centre’ datapoint ‘hln(sij)i � hriji’
1 of the whole

observed ‘ln(sij)� rij’ dataset. As every well-determined coordination

shell in the traditional calculation scheme is considered to be an

independent ‘observation’ (Brown & Altermatt, 1985; Brese &

O’Keeffe, 1991), the coordinates of the above ‘gravity centre’ data-

point observed for a given ion pair are usually close to the ‘ln(sij) �

rij’ data corresponding to the coordination shells with the most

frequently occurring (‘typical’) coordination number(s).

Fig. 1 shows the relations between the straight lines rij = r0 � b �

ln(sij) of different slopes. The � and � straight lines represent the

idealized hypothetical ‘ln(sij)� rij’ correlations with the same ‘gravity

centre’ datapoint; the � line has b > b(conventional) and the � line

has b < b(conventional). If the real ‘ln(sij) � rij’ correlation is

represented by the � straight line, then the conventional straight line

gives overestimated and underestimated ln(sij) (and sij)
2 values for

the shorter (r0ij) and longer (r00ij) bond lengths, respectively. If the real

‘ln(sij) � rij’ correlation is represented by the � straight line, then the

conventional straight line gives, in contrast, underestimated and

overestimated ln(sij) (and sij) values for the shorter (r0ij) and longer

(r00ij) bond lengths, respectively. The two different types of the

systematic variations of the sij values observed for the � and � straight

lines can be respectively denoted as the � and � variations.

Using the scheme presented here (Fig. 1), one can easily check the

quality of the BV parameters reported for a given ion pair: if these

BV parameters show systematic variations of the sij (and BVS) values

within the short-bond and/or long-bond range(s), then the real ‘sij �

rij’ correlation is approximated poorly. Detecting the type of

systematic variations observed for a given ion pair (�, �) can help find

the actual value of the b parameter. It is important to note that

overestimating and underestimating the sij values calculated for short

and long (or vice versa) bonds belonging to the same irregular

coordination shells can compensate for each other, so that the BVS

values obtained for these shells can be quite ‘plausible’; therefore,

only regular (or nearly regular) shells should be used for checking the

quality of the BV parameters.

The performance of the conventional BV parameters reported for

a given ion pair is critically dependent: (a) on the real slope of the

‘ln(sij) – rij’ correlation and (b) on the range of the observed bond

Figure 1
Typical relations between the straight lines rij = r0 � b � ln(sij) of different slopes
(for simplicity, all the values are given in arbitrary units, a.u.).

1
hln(sij)i and hriji denote the mean values for ln(sij) and rij.

2 If ln(a) < ln(b), then a < b.
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lengths rij. If the real mathematical slope is close to�0.37 Å and if the

range of observed bond lengths is narrow, then the divergence

between the real and conventional straight lines rij = r0� b� ln(sij) is

insignificant and, therefore, the conventional BV parameters

reported for a given ion pair can be used with reasonable success.

Otherwise, these BV parameters can be used successfully only within

the rij range near to the above ‘gravity centre’ datapoint (Fig. 1),3 and

must be revised. Since the coordinates of the ‘gravity centre’ data-

point observed for a given ion pair, hln(sij)i and hriji, are usually close

to the ‘ln(sij) � rij’ data corresponding to the ‘typical’ coordination

shells (see above), even poorly determined conventional BV para-

meters can give reasonable BVS values in most cases! However, high-

quality BV parameters should give reasonable BVS values not only

for ‘typical’ coordination shells, but also for less-common shells

formed by a given ion pair in ordered, stoichiometric and stable

structures determined accurately and investigated under ambient

conditions. Unfortunately, this requirement was ignored for a long

time and a few theories were developed based on the axiomatic use of

the ‘universal constant’ b = 0.37 Å (e.g. O’Keeffe & Brese, 1991;

Wang & Liebau, 2007). In order to be properly validated, any BVM

related theory (including that of Wang & Liebau, 2007) ought to

operate with the BV parameters of the highest possible quality. Most

of the conventional BV parameters used by Wang & Liebau (2007) in

their theory show the aforementioned systematic � variations of the

BVS values (Sidey, 2008) and, therefore, clearly must be revised.
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Applicability of the Wang–Liebau polyhedron eccentricity parameter in the

bond-valence model [Wang & Liebau (2007). Acta Cryst. B63, 216–228] has been

found to be doubtful: the correlations between the values of the polyhedron

eccentricity parameters and the bond-valence sums calculated for the cations

with one lone electron pair are probably an artifact of the poorly determined

bond-valence parameters.

In the literature on crystal chemistry, several parameters have been

proposed to describe the distortion of the coordination polyhedra

(Robinson et al., 1971; Dollase, 1974; Lueken et al., 1987; Makovicky

& Balić-Žunić, 1998; Lalik, 2005; Brown, 2006), but only the eccen-

tricity parameter Ui proposed by Wang & Liebau (2007) explicitly

indicates the degree of stereoactivity of the lone electron pair ns2

(LEP). In this respect, the Wang–Liebau eccentricity parameter

appears to be very useful for crystal chemical analysis. However,

applicability of the Ui parameter in bond-valence analysis (Brown,

2002) is currently quite doubtful, and the main goal of this commu-

nication is to avoid possible misinterpretation of the results of the

statistical analyses made by Wang & Liebau (2007).

Nowadays the bond-valence model (BVM) is widely used in

mineralogy and structural inorganic chemistry as a valuable tool for

detecting errors in crystal structure determination and for predicting

interatomic distances in the crystal structures of known chemical

composition and presupposed topology (Brown, 2002). Bond valence

(BV) s is defined as the classical atomic valence shared with each

bond. According to the bond-valence sum rule, the oxidation state

(atomic valence) Vi can be calculated from the sum of the individual

bond valences sij (where i denotes an atom bonded to j), as given by

Vi ¼
X

j

sij: ð1Þ

Individual bond valences sij (in valence units, v.u.) can be calculated

from the observed bond lengths rij using the Brown–Altermatt

formula (2) or the Brown–Shannon formula (3), where r0, b and n are

the empirically determined parameters for a given ion pair (Brown &

Shannon, 1973; Brown & Altermatt, 1985).

sij ¼ exp½ðr0 � rijÞ=b� ð2Þ

sij ¼ ðr0=rijÞ
n: ð3Þ

It should be noted, however, that the Brown–Altermatt formula (2) is

used in almost all recent works describing applications of the BVM.

The b parameter in (2) is commonly taken to be the ‘universal

constant’ equal to 0.37 Å, and the r0 parameters have been deter-

mined for a large number of ion pairs, assuming b = 0.37 Å (Brown &

Altermatt, 1985; Brese & O’Keeffe, 1991). Hereafter, the BV para-

meters determined using the ‘universal constant’ will be referred to as

the conventional BV parameters.

In order to describe the LEP stereoactivity, Wang & Liebau (2007)

introduced the so-called eccentricity parameter, Ui, which is a vector

defined as

Ui ¼ �
X

j

uij: ð4Þ
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The uij terms are the vectors pointing from the nucleus of an atom i to

its ligands j. The lengths of the uij vectors are scaled using

juijj ¼ expð�rij=0:2Þ: ð5Þ

Based on the statistical analyses, Wang & Liebau (2007) have

reported the linear correlations between the |Ui| values calculated for

individual coordination shells of a given ion pair and the values of the

conventional BV parameters r0 and bond-valence sums (BVSs)

determined for the same coordination environments.

Using elementary mathematics, one can easily conclude that the

highest |Ui| values are expected for coordination shells with small

numbers of strong (short) bonds having approximately the same

direction. Thus, the V-shaped AX2 atomic groups and the pyramids

AX3, AX4 and AX5 having all the A—X bonds located in one

hemisphere of the coordination shell must have the highest |Ui|

values. However, in accordance with the Gillespie–Nyholm theory,

the same coordination environments are expected for the A cations

with one highly stereoactive LEP (Gillespie & Nyholm, 1957). Hence,

the |Ui| values can really be used as a measure of the LEP stereo-

activity, and the highest |Ui| values are expected for the coordination

shells with small coordination numbers (CNs). In the coordination

shells with higher CNs (if CN >> Vi), chemical bonds are much

weaker (and longer, as expected from the BVM) and distributed in

space more regularly; so that the uij vectors are shorter and partially

compensate for each other, resulting in much smaller |Ui| values. In

other words, there must be simple and reasonably strong correlations

between the |Ui| values and CNs observed for distorted coordination

environments of the cations with one stereoactive LEP: the smaller

the CNs the higher the |Ui| values. It must be noted that all centro-

symmetric and certain regular non-centrosymmetric coordination

shells (triangles AX3, tetrahedra AX4, trigonal bipyramids AX5, etc.)

of the cations with one LEP are possible only if the LEP stereo-

activity is fully constrained; the uij vectors in these shells cancel each

other, and the |Ui| values of these shells are properly equal to zero, in

spite of different CNs.

However, the conclusion of Wang & Liebau (2007) that the LEP

stereoactivity leads to significant deviations between the Vi and BVS

values is extremely important for the BVM and cannot be accepted

without careful examination. Analysis of the paper of Wang & Liebau

(2007) has revealed some methodological shortcomings (considering

only the conventional BV parameters; ignoring the physical meaning

of the r0 values) making the aforementioned conclusion questionable

(see below).

The above conclusion of Wang & Liebau (2007) was based solely

on the BVS values calculated using the Brese–O’Keeffe conventional

BV parameters (Brese & O’Keeffe, 1991); moreover, the attempts of

other authors to refine both r0 and b (Burns et al., 1997; Krivovichev

& Brown, 2001; Locock & Burns, 2004; Sidey, 2006) were discouraged

by Wang & Liebau (2007). However, for some ion pairs considered by

Wang & Liebau (2007) and having the highest LEP stereoactivity

(Sn2+/O2�, Pb2+/O2�, Sb3+/O2�, Bi3+/O2�, S4+/O2�, Se4+/O2�, Te4+/

O2� and I5+/O2�), there is an alternative set of high-quality BV

parameters, r0 and n, reported by Brown & Wu (1976) for use in the

Brown–Shannon formula (3) (see Table 1).

The BVS values calculated for some coordination environments

with CN ’ Vi by using the conventional and Brown–Wu parameters

are given in Table 2. One can see that, in general, the BVS values

calculated from the Brown–Wu parameters are much closer to the Vi

values and much smaller than the BVS values calculated from the

conventional parameters. Hence, strong ‘overbonding’ reported by

Wang & Liebau (2007) for the coordination shells with small CNs

(and with the high |Ui| values) is not found when the Brown–Wu

parameters are used.

By definition, the r0 parameter in (2) and (3) is equal to the length

of the bond of unit valence. The exact (actually, close to exact) r0

values can be directly observed in the regular coordination shells with

CN = Vi. Ideally, the r0 parameters reported by Brown & Wu (1976)

and by Brese & O’Keeffe (1991) for the same ion pairs should be

equal to each other. However, analysis of the typical rij distances

observed for the SbO3 and BiO3 pyramids (Table 3) indicates that the

Brown–Wu r0 parameters reported for the Sb3+/O2� and Bi3+/O2� ion

pairs are smaller and (especially for the Sb3+/O2� pair) much more

physically meaningful than the conventional r0 parameters. The

values of the conventional r0 parameters reported for the Sb3+/O2�

and Bi3+/O2� ion pairs are clearly overestimated and result in

conventional BVSs calculated for the SbO3 and BiO3 pyramids which

are too high. Hence, strong ‘overbonding’ observed for the above ion

pairs is an artifact of the poorly determined conventional BV para-

meters.

Unfortunately, the r0 parameters for other ion pairs considered in

this paper cannot be easily observed; but the enormous ‘overbonding’

indicated for the stoichiometric and stable structures by using the

conventional BV parameters (see Table 2) could suggest that some

other conventional r0 values collected in Table 1 (at least, the r0
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Table 1
Bond-valence parameters reported by Brese & O’Keeffe (1991) and by Brown &
Wu (1976) for the considered ion pairs.

Bond-valence parameters

Brese & O’Keeffe (1991) Brown & Wu (1976)

Ion pair r0 (Å) b (Å) r0 (Å) n

Sn2+/O2� 1.984 0.37 1.860 4.5
Pb2+/O2� 2.112 0.37 2.044 5.5
Sb3+/O2� 1.973 0.37 1.910 4.5
Bi3+/O2� 2.09 0.37 2.010 5.0
S4+/O2� 1.644 0.37 1.629 4.6
Se4+/O2� 1.811 0.37 1.796 4.0
Te4+/O2� 1.977 0.37 1.933 4.5
I5+/O2� 2.00 0.37 1.967 4.5

Table 2
Typical relations between the BVS values calculated from the Brese–O’Keeffe and
Brown–Wu parameters for the coordination shells with small CNs of the considered
ion pairs.

BVS (v.u.)†

Compound
ICSD
code‡

Coordination
shell§

Brese & O’Keeffe
(1991)

Brown & Wu
(1976)

Na4SnO3 49624 SnO3 2.733 (+37%) 2.077 (+4%)
Rb2SnO2 24805 SnO3 2.478 (+24%) 1.917 (�4%)
K4PbO3 74874 PbO3 2.587 (+29%) 2.177 (+9%)
K2Pb2O3 1412 PbO3 2.530 (+27%) 2.132 (+7%)
Na3SbO3 23346 SbO3 3.724 (+24%) 3.123 (+4%)
CsSbO2 59329 SbO4 3.286 (+10%) 2.936 (�2%)
Na3BiO3 23347 BiO3 3.34 (+11%) 2.692 (�10%)
Rb3BiO3 407294 BiO3 3.34 (+11%) 2.705 (�10%)
Na2SO3 4432 SO3 4.380 (+10%) 4.318 (+8%)
K2SO3 60762 SO3 4.263 (+7%) 4.189 (+5%)
H2SeO3 31929 SeO4 4.046 (+1%) 3.837 (�4%)
K2Se2O5 63508 SeO3�4 4.073 (+2%)} 3.833 (�4%)}
K2TeO3 65640 TeO3 4.598 (+15%) 3.944 (�1%)
Cs2TeO3 59164 TeO3 4.274 (+7%) 3.691 (�8%)
�-LiIO3 2642 IO5 5.47 (+9%) 4.940 (�1%)
�-RbIO3 2825 IO6 5.40 (+8%) 5.042 (+1%)

† The relative BVS errors calculated as [(BVS � Vi)/Vi] � 100% are given in

parentheses. ‡ See Belsky et al. (2002). § The shortest distance from the central cation to

another cation in a given crystal structure was assumed to be the physical limit of the

coordination sphere under consideration. } The mean BVS value for the Se4+ ions in the

structure.



values reported for the Sn2+/O2� and Pb2+/O2� ion pairs) are also

strongly overestimated.

The above differences between the values of the conventional r0

parameters and single bond lengths (as clearly observed for the Sb3+/

O2� and Bi3+/O2� ion pairs and supposed for some other ion pairs

considered in this work) are probably caused by simplification of the

procedure for determining the BV parameters, as proposed by Brown

& Altermatt (1985). Since the performances of the Brown–Shannon

and Brown–Altermatt formulae in approximating the real (observed)

‘sij � rij’ curves are virtually the same (Brown, 2002), the reason for

the above disagreement should be sought in the procedures used for

determining the Brown–Wu and conventional BV parameters.

The procedure for determining the conventional BV parameters

from the structural data (Brown & Altermatt, 1985; Brese &

O’Keeffe, 1991; Brown, 2002) includes the following steps:

(i) selecting the most reliable dataset of bond lengths for a given

ion pair;

(ii) solving (1) by using (6) (where b = 0.37 Å) for every selected

coordination sphere of a given ion pair

r0 ¼ b ln Vi=
X

j

expð�rij=bÞ

" #
; ð6Þ

(iii) averaging the r0 values calculated for a given ion pair.

Varying the b constant to minimize the standard errors of the r0

values, Brown & Altermatt (1985) established that the b parameter

could rarely be determined to better than 0.05 Å and that a value of

0.37 Å was consistent with most of the fitted values. Since that time,

the b parameter is usually considered as the ‘universal constant’

having a value of 0.37 Å. In other words, in approximating the real ‘sij

� rij’ correlations, the ‘canonical’ two-parameter Brown–Altermatt

formula (2) was replaced by the much less-flexible monoparametric

Brown–Altermatt formula

sij ¼ exp½ðr0 � rijÞ=0:37�: ð7Þ

In most cases, the use of (7) is justified; but for certain ion pairs

(especially for those having a wide range of CNs) close approxima-

tions of the real ‘sij � rij’ correlations are possible only by fitting of

both r0 and b. If the r0 values calculated from (6) for different CNs of

a given ion pair differ significantly [as actually observed by Wang &

Liebau (2007) for the considered ion pairs], this can be a symptom of

a poor description of the real ‘sij � rij’ correlation with the conven-

tional BV parameters.

In the general case, (2) and (6) include two actual variables, r0 and

b, and cannot be solved separately for one bond or one coordination

sphere. Mathematically, two independent variables could be deduced

only from, at least, two independent equations.

For any separately considered coordination shell formed by a given

ion pair and for any fixed non-zero b value, (6) can easily be solved to

give BVS = Vi. As with any other separately considered two-variable

equation, this has an infinite number of solutions (r0; b), including the

solution for b = 0.37 Å. If all coordination spheres observed for a

given ion pair have the same CN, then the differences between the r0

values calculated from (6) for every separately considered coordi-

nation sphere (at the plausible b constant) are usually insignificant

because of the relatively small variability of the average bond lengths

rij in the chemically equivalent coordination environments AXn. If,

however, coordination shells observed for a given ion pair have

different CNs, the r0 values calculated for all the possible CNs of a

given ion pair can be nearly constant only in the case of the correctly

preset value of the b parameter. In this particular case only, one can

state that the unique correct solution (r0; b) showing the best

agreement between the BVS and Vi values for all coordination

spheres and for all CNs of a given ion pair is found. It must be noted

that some variations of the r0 values are unavoidable owing to steric

and electronic constraints and/or due to experimental errors; but if

the correct b value for a given ion pair is far from the preset b value,

then the differences between the r0 values calculated for different

CNs of a given ion pair can be very significant (i.e. far beyond the

variation range expected from the above constraints and experi-

mental errors).

Since every well determined coordination sphere in the above

calculation scheme is regarded as an independent ‘observation’, the

average r0 value determined for a given ion pair from the different

interim r0 values is closer to the r0 values calculated for the typical

coordination spheres with the most frequently occurring (‘usual’)

CNs. Thus, the BV parameters obtained in this way can give a

reasonable approximation of the real ‘sij � rij’ curve within the limits

corresponding to the ‘usual’ CNs of a given ion pair, but can fail for

the less-common CNs if the correct approximation of the whole ‘sij �

rij’ curve is possible only by using the ‘canonical’ Brown–Altermatt

formula (2).

The aforementioned systematic variations of the r0 values calcu-

lated for different CNs at the wrong b constant can be illustrated

using the following idealized example concerning the highly impor-

tant ion pair Al3+/O2�. This ion pair forms the coordination poly-

hedra AlO4 and AlO6 with the typical Al—O interatomic distances of

� 1.74 and � 1.91 Å, respectively (see, for example, Mohri, 2000).

Solving (6) separately for each typical coordination polyhedron at b =

0.37 Å, one can obtain r0 = 1.634 Å from AlO4 and r0 = 1.654 Å from

AlO6. The r0 value obtained from the typical AlO4 tetrahedron

indicates significant ‘underbonding’ for the typical AlO6 octahedron

(BVS = 2.85 v.u.); the r0 value obtained from the typical AlO6 octa-

hedron shows, in turn, significant ‘overbonding’ for the typical AlO4

tetrahedron (BVS = 3.17 v.u.). If the quantities of the considered

coordination polyhedra AlO4 and AlO6 are equal, the expected

average conventional r0 value is �1.644 Å. This value gives a better

approximation of the real ‘sij� rij’ curve for the Al3+/O2� ion pair, but

still indicates some ‘overbonding’ (BVS = 3.09 v.u.) and ‘under-

bonding’ (BVS = 2.92 v.u.) for the typical polyhedra AlO4 and AlO6,

respectively. The ‘classical’ value of the conventional BV parameter

reported for the Al3+/O2� ion pair, r0 = 1.651 Å (Brown & Altermatt,

1985; Brese & O’Keeffe, 1991), is definitely optimized only for CN = 6

and cannot be successfully used for CN = 4 because it erroneously

indicates BVS = 3.15 v.u. for the typical AlO4 tetrahedron.

Solving the system of the two independent equations (2) or (6)

concerning the typical polyhedra AlO4 and AlO6, one can easily

deduce the ‘correct’ r0 and b values (� 1.62 and � 0.42 Å, respec-

tively) indicating the adequate BVS values for these polyhedra
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Table 3
Interatomic distances (Å) in the regular SbO3 and BiO3 coordination shells.

Compound ICSD code† Coordination shell† A—X distance

Na3SbO3 23346 SbO3 1.893
K3SbO3 279579 SbO3 1.923
Cs3SbO3 279580 SbO3 1.928
K2Al2Sb2O7 280310 SbO3 1.936
Na3BiO3 23347 BiO3 2.054
K3BiO3 407293 BiO3 2.063
Rb3BiO3 407294 BiO3 2.052
Cs3BiO3 406563 BiO3 2.036

† Footnotes as for Table 2.



(3.01 v.u. in both cases). Setting b = 0.42 Å in (6), one can obtain the

virtually constant r0 values for both typical polyhedra of the Al3+/O2�

ion pair; in all other cases, the systematic variations of the r0 values

calculated for different CNs will be observed.

The above calculation of the ‘correct’ BV parameters for the Al3+/

O2� ion pair should be regarded as only a rough estimation made for

illustrative purposes; but the performance of the BV parameters r0 =

1.62 Å and b = 0.42 Å can compete with the performance of the

Brown–Wu parameters (r0 = 1.622 Å and n = 4.29) that indicate BVS

= 2.96 v.u. for the typical AlO4 tetrahedron and BVS = 2.98 v.u. for

the typical AlO6 octahedron.

Methodologically, the statistical procedure developed by Brown &

Shannon (1973) and then used by Brown & Wu (1976) is much more

appropriate for determining the reliable BV parameters than the

simplified procedure of Brown & Altermatt (1985). Brown &

Shannon (1973) and Brown & Wu (1976) clearly tried to achieve the

best possible approximation of the real ‘sij � rij’ correlation for a

given ion pair. The closest possible approximations were achieved by

the weighted non-linear least-squares fitting of the r0 and n para-

meters against the expected BVS values. In the above least-squares

fitting, the BVS differences calculated for the less-common CNs of a

given ion pair were much higher in weight; as a result, the BV

parameters reported by Brown & Wu (1976) gave, in general, close

approximations of the whole ‘sij � rij’ curves, including the ranges

corresponding to the less-common CNs. It must be noted, however,

that the paucity of the structural data available for certain ion pairs in

1976 did not allow all the BV parameters reported by Brown & Wu

(1976) to be determined with the same high quality.

Taking all the aforementioned facts into account, two conclusions

can be made:

(i) The correlations found by Wang & Liebau (2007) for the |Ui|

and r0 values can indicate systematic variations of the r0 values

calculated for different CNs using an unoptimized b constant.

(ii) Since the ‘universal constant’ b = 0.37 Å is probably not the

best choice for the considered ion pairs (see above), the values of the

conventional BV parameters reported for these ion pairs can give

poor approximations of the real ‘sij � rij’ curves, and strong ‘over-

bonding’ reported for the coordination shells with the high |Ui| values

and small CNs can really be an artifact of the poorly determined

conventional BV parameters.
Using different calculation schemes, a few authors (Burns et al.,

1997; Krivovichev & Brown, 2001; Locock & Burns, 2004; Sidey, 2006;

Malcherek & Schlüter, 2007; Sidey et al., 2008) have simultaneously

refined the r0 and b values for use in the ‘canonical’ Brown–Altermatt

formula (2), and have greatly improved approximations of the real ‘sij

� rij’ correlations for certain ion pairs. If a researcher fails to obtain

good agreement using the conventional BV parameters reported for

a given ion pair, the use of the alternate calculation schemes devel-

oped by the above authors for determining reliable BV parameters

should always be attempted.
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Makovicky, E. & Balić-Žunić, T. (1998). Acta Cryst. B54, 766–773.
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